-l

o
=
Z S L -
QO Z 2w o |E LoD
4 wm § |5 -
s 2 N N
- Z & 3 d
< 75 S & % o 2 LO
w e i nmm wm | a-—
MC, ZEET BN i xR
s = = 1. | =
= =
> £ |=
& Z mm 2 |
Q g 2 |&
25 !
>
<
Z

REPORT DOCUMENTATION PAGE o e 8

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing i ions, searching existing data sources

1. AGENCY USE ONLY (Leave Biani) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1996 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Static Scheduling of Conditional Branches in Parallel Programs(U)

6. AUTHOR(S)
George, Robert Tyler

7. PERFORMING ORGANIZATION NAMEiS) AND ADDRESS(ES) |5 PERFORMING ORGANIZATION
Naval Postgraduate Schoo REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
Army Research Laboratory AGENCY REPORT NUMBER
Information Sciences and Technology Directorate AMSRL-IS-PA
2800 Powder Mill Road

Adelphi, MD 20783-1193

1. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT o T 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words) . . .
The problem of scheduling parallel program tasks on multiprocessor systems is known to be NP-complete in

its general form. When non-determinism is added to the scheduling problem through loops and conditional
branching, an optimal solution is even harder to obtain. The intractability of obtaining an optimal solution for the

consider many real-world factors, such as communication overhead, target machine topology, and the trade-off
between exploiting the parallelism in a parallel program and the resulting scheduling overhead.
We present the probabilistic merge heuristic -- in which a unified schedule of all possible execution instances

We have found that the merge séheduler produces schedules which are 10% faster than previous techniques.
More importantly, however, we show that the probabilistic merge heuristic is significantly more scalable -- being
able to schedule branch and precedence graphs which exceed 50 nodes.

14.SUBJECTTERMS . 15. NUMBER OF PAGES
Parallel Processing, Scheduling 64
16. D
17. SECURITY CLASSFICATION——Tio SeoomT o CLASSIFICATION |16, SECURITY CLASSIFIGATION |20 CRITATION SEASSTonsS
OF REPO.H’T OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

1 Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

STATIC SCHEDULING OF CONDITIONAL
BRANCHES IN PARALLEL PROGRAMS

Robert Tyler George

Army Research Laboratory
B.S., Virginia Polytechnic and State University, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL

December 1996

Author: /ﬁ £ Z

Robert Tyler George

— g

Theodore Lewis, Thesis Advisor

Dave Pratt, Second Reader

Ted Lewis, Chairman,
Department of Computer Science

1ii

ABSTRACT

The problem of scheduling parallel program tasks on multiprocessor systems is
known to be NP-complete in its general form. When non-determinism is added to the
scheduling problem through loops and conditional branching, an optimal solution is even
harder to obtain. The intractability of obtaining an optimal solution for the general
scheduling problem has led to the introduction of a large number of scheduling heuristics.
These heuristics consider many real-world factors, such as communication overhead, target
machine topology, and the trade-off between exploiting the parallelism in a parallel
program and the resulting scheduling overhead.

We present the probabilistic merge heuristic -- in which a unified schedule of all
possible execution instances is generated by successively scheduling tasks in order of their
execution probabilities. When a conditional task is scheduled, we first attempt to merge the
task with the time slot of a previously scheduled task which is a member of a different
execution instance.

We have found that the merge scheduler produces schedules which are 10% faster
than previous techniques. More importantly, however, we show that the probabilistic
merge heuristic is significantly more scalable -- being able to schedule branch and

precedence graphs which exceed 50 nodes.

TABLE OF CONTENTS

INTRODUCTIONoooovomiisneneeenseessceeeeseoceeee oo oo 1
A, BACKGROUNDcocoeerremmmmmsssssemseoseessessooeeeooeeeeooeoeooooooooooooooeoo 1
B. SCHEDULING PARALLEL TASKSoooovoooomooooo 2
C. THE SCHEDULING PROBLEM -........oooooocrrommmmmsooooo 3
THE TASK SCHEDULING MODELooooooceoeeeesooooooo 5
A, BACKGROUNDocooovererrmmmeensesseeeeeeeesseooseoeeeoeoeoeoooooooooooeoeo 5
B. TARGET MACHINEoooooccovccemmmmmmmeeeeseoceeoeeseoeeoooooooooooooooooo 5
C. PARALLEL PROGRAM TASKSoooooocooreeoooooo 6
1 Modeling Conditional Branchingooooovvvoreooooo 7
2 Execution and Communication COStoooomoovvveooreoo 8
D. THE SCHEDULEccoovvveeemmmemnnnessoeeeeeeeeeoeeoeoeoeoooooooooooooooooooo 10
E. PERFORMANCE CRITERIAoooooommmmoeooooo 10
LIST SCHEDULINGouuovvvovemeeemessasmsssmmmseeeseeeessssesssoessseos oo 13
A. BACKGROUNDoooeoeeeemmmmmmemmmmmmmeeeneeeseseseeesseeseesoooooooooooo 13
B. LIST SCHEDULINGooovveevmvvrmmereecoeeeneeneeseesoeeeoeeoooooooooooooooooooo 13
C. COMMUNICATION ISSUESoocovvoveeeeoseseerecsersoooooooooooooeoooooo 15
1. Parallelism Versus Communication Delayccoocommmvemreeeeeeann., 15
2 Level AIErationcceceomemvvveemereeeeoneemssesreoeoooeeooooooooooooooe 16
3 List Scheduling with Communicationooovvooovvoooooo 17
4 Program and Machine Modelsooooommmmvvoommmoooo 18
5 TEIMUNOIOZY ..cvoovveoeeereeeree e 19
6. General List-Scheduling Heuristicooovvvvvovoovveoooooo 20
D. THE MAPPING HEURISTIC (MH)cvvooooeoveeeeooooooooooo 21
1. ROULNG TAIESvveeoeereeeeeeeeeeeseeeseeeeeeeeeeees oo 24
SCHEDULING NON-DETERMINISTIC TASK GRAPHS ..., 27
A. BACKGROUNDcoooummmmmmmmnereereeeeeeeseeeeeeeee oo 27
B. REDUCING THE DEGREE OF N ON-DETERMINISMcceomnnnn.. 27
1. Similarity in Non-deterministic Task Graphs ..o 28
2. The Reduced Task Graphoveeoomeeeeoeomrooeoooo 29
C. THE MULTI-PHASE APPROACHooooooooooooooooooooo 32
1. Phase 1: Generateccvrvvveneeeeeeeseeeeeeoeeseeooeeoeooooooooooo 33
2. Phase 2: CONSLIUCEouueeeernnreeeeneeceeeeee e 35
3. Phase 3: Scheduleowccuumerrrvveeeoemeeeeossseesooooooooooooo 36
4 Phase 4: Mergeoveveeemmmmmmeeeeeeeeeeeeoseoeeseooeoooooooooooo 38
THE PROBABILISTIC MERGE HEURISTIC ..o 43
A. DESIGN CONSIDERATIONScccovooeeeeeeeseeseseseeoooooooooooooo 43
B. THE PROBABILISTIC MERGE HEURISTIC ... 45
1 Level Calculationccceueemmememsooeeeeveeeooemssoooo 45
2 Probabilistic Mergingceeeeooooeoovevocovemmmmmo 45
C. SIMULATION RESULTS ..coovevvvermmemmooeeseccoeeeoeoeeoooooooooooo 49
1 Scheduling Efficiencyoooooooveeoomemmccemooooo 49
vii

2. Schedule RUDGIESo....oovceeeveereseerreeoeeeooesees oo
D. CONCLUSIONSocoooooreecersrsomssosssseses oo

LIST OF REFERENCES

viii

I. INTRODUCTION

A. BACKGROUND

A parallel computer is a set of processors that are able to work cooperatively to
solve a computational problem [1]. This definition is broad enough to include parallel
Supercomputers that contain hundreds or thousands of processors, networks of
Wworkstations, multiple processor workstations, and embedded systems. Parallel computers
present a particularly interesting computer architecture because they offer the potential to
concentrate enormous computational Tesources -- processors, memory, /O bandwidth, etc.
-- to solve computationaly expensive problems.

Parallelism has sometimes been viewed as a rare and exotic subarea of computing,
interesting but of little relevance to the average programmer. Recent trends in applications,
computer architecture, and networking shows that this view is no longer tenable.
Parallelism is becoming ubiquitous, and parallel programming is becoming central to the
programming enterprise.

A more important factor affecting the acceptance of parallel computing
architecutures is the emergence of impending technical and economic obstacles which have
begun to slow the Pace of advances in semiconductor technology. In 1964, Gordon Moore
observed that the number of transistors that semiconductor makers could put on a chip was
doubling every year. By the late 1970’s, however, the pace had slowed to a doubling of
transistors every 18 months. Today, modern chips are being manufactured with 7 million
transistors by aggressively exploiting the upper limits of optical lithography. If
semiconductor are to continue to scale according to Moore’s law, exotic technologies such
as x-ray lithography will be required. More importantly, the costs of building
semiconductor plants has also scaled linearly -- doubling every 3 years. A modern
semiconductor facility currently costs $1 - $3 billion, Clearly, it may not be long before

the semiconductor industry plateaus, the pace of transistor integration declines, and

manufacturing costs begin to soar. Paralle]l processing provides an execellent alternative

to the current reliance on the ever increasing integration of modern semiconductors.

B. SCHEDULING PARALLEL TASKS

Scheduling the tasks which comprise a parallel program is a classical field with
several interesting problems and results. A scheduling problem emerges whenever there is
a choice as to the order in which a number of tasks can be performed, and/or in the
assignment of tasks to servers for processing. Such a scheduling problem may involve jobs
that need to be processed in a manufacturing plant, bank customers waiting to be served by
tellers, aircraft waiting for landing clearance, or program tasks that need to be run on a
parallel or distributed computer. Clearly, there are fundamental similarities among
scheduling problems regardless of the the nature of the tasks, and the environment.

In the era of parallel and distributed computing, the scheduling problem has begun
to gain the attention of many researchers. A computer program can be viewed as a
collection of tasks which may run serially or in parallel. The goal of scheduling tasks on a
parallel computer is to determine an assignment of tasks to processing elements, and an
order in which tasks are to be executed, in order to optimize some performance criteria. As
a result, an optimal schedule will determine both the allocation of tasks to processors, and
the execution order the tasks. If there are no precedence relations among the tasks forming
a program, this problem is known as a fask allocation problem. Task allocation has been
studied extensively for the past two decades and is a somewhat different problem than task
scheduling.

Task scheduling is one of the most challenging problems in parallel and distributed
computing. It is known to be NP-complete in its general form as well as in several restricted
cases [2]. Researchers have studied restricted forms of the scheduling problem by
constraining either the task graph representing the parallel program, or the parallel
computer model. When communication between tasks is not considered, a polynomial time

algorithm can be found for scheduling tree-structured task graphs, where all tasks execute

in unit time. Such special cases, although representing optimal solutions, do not accurately
represent real-world systems. In an attempt to solve the scheduling problem in the general
case, a number of heuristics have been introduced. A heuristic, by definition, does not
guarantee an optimal solution to the problem, but attempts to find near-optimal solutions

most of the time.

C. THE SCHEDULING PROBLEM

The scheduling problem has been described in a number of different ways in
different fields. Job sequencing in production management, a classical problem from
operations research, has influenced most of what has been written about this problem.
Manufacturing processes often involve several operations to transform raw material into a
finished product. The problem is to determine sequences of operations that are preferred
according to certain (economic) criteria. The problem of generating these preferred
sequences is referred to as the sequencing problem. Over the years, several methods have
been used to solve the sequencing problem, including complete enumeration, heuristic
Tules, integer programming, and sampling methods. It is clear that complete enumeration
is impractical, and optimal solutions cannot be obtained in real time. As a result, heuristic
methods have been used to provide solutions to the most general case of the problem.

In general, the scheduling problem assumes a set of resources, and a set of
consumers serviced by these resources according to a certain policy. Based on the nature
of and the constraints on the consumers and the resources, the problem is to find an efficient
policy for managing the access to and the use of the resources by various consumers to
optimize some desired performance measure such as schedule length. Accordingly, a
scheduling system can be considered as consisting of a set of consumers, a set of resources,
and a scheduling policy. A task in a computer program, a job in a factory, or a customer in
a bank are examples of consumers. A Processing element in a computer system, a machine
in a factory, or a teller in a bank are examples of resources. First-come-first-served is one

example of a heuristic scheduling policy. Natually, scheduling policy performance varies

with different circumstances. While first-come-first-served may be appropriate in a bank
environment, it may not necessarily be the best policy to schedule jobs on a factory floor.

Performance and efficiency are two characteristics used to evaluate a scheduling
algorithm. We should evaluate a scheduling system based on the goodness of the schedule
produced, and the efficiency of the policy. In other words, we are concerned with both the
quality of the generated schedule and the efficiency of the scheduler itself. The resulting
schedule is judged by the performance criteria we are trying to optimize. For example, if
we are optimizing the completion time of a program, the less time the schedule takes, the
better the schedule. Both the scheduler and the scheduling policy can be evaluated based
on their respective time complexities. If two policies produce schedules of equal quality,
then the simpler one is clearly better.

In this thesis, we are concerned with scheduling program tasks on parallel and
distributed computers. The tasks are the consumers and will be represented using directed
acyclic graphs called task graphs, while the processing elements are the resources and their
interconnection networks will be represented using undirected graphs. The scheduler
generates a schedule using a timing diagram call the Gantr chart to illustrate the allocation
of the parallel program tasks onto the target machine processors. The Gantt chart consists
of a list of the processors in the target machine and, for each processor, a list of tasks
allocated to that processor, ordered by their execution time, including task start and finish

times.

Il. THE TASK SCHEDULING MODEL

A. BACKGROUND

In this section we describe a general model to formulate the scheduling problem.
The models here are deterministic, in the sense that all information governing the
scheduling decisions is assumed to be known in advance. In particular, the task graph
representing the parallel program and the target machine is assumed to be available before
the program starts execution. The non-deterministic scheduling problems analyzed in this
thesis can be represented as special cases of this model. Loops, however, cannot be
represented in parallel programming models using this system.

There are four components in any scheduling system:

1. the target machine

2. the parallel program tasks

3. the generated schedule

4. the performance criteria

We will review each of these components and show how the program and target

machine parameters can be used to estimate execution times and communication delays.

B. TARGET MACHINE

The target machine is assumed to be made up of m heterogeneous processing
elements connected using an arbitrary interconnection network. Each processing element
can run one task at a time, and all tasks can be computed by any processing element.

Formally, the target machine characteristics can be described as a system
(P [Py) [S3, 11,1, [BL, [R,]) as follows:
*P= {P, .. P} is a set of processors forming the parallel architecture.
. [Pij] is an m X m interconnection topology matrix.

*S; 1 <i<m, specifies the speed of processor P;.

* 1, 1 <i<m,specifies the start-up cost of initiating a message on processor P; .
* B, 1 <i<m,specifies the start-up cost of initiating a process on processor P, .
*R; 7 is the transmission rate over the link connecting two adjacent processors P,

ande

The connectivity of the processing elements can be represented using an undirected

graph called the target machine graph. Processors are occasionally referred to simply by

their indices (e.g., 1 may be used rather than P 1)» especially when target machine nodes

areé more conveniently labeled with integers.

C. PARALLEL PROGRAM TASKS

A parallel program is modeled as a partially ordered set (poset) (T, <), where T'is a
set of tasks. The relation u < v implies a data dependency between tasks u and v. The
computation of task v depends on the results of the computation of task u, so task u must
be computed before task v, and the result of computation of task # must be known by the
processor computing task v. The characteristics of a parallel program can be defined as the

system (7, <, [D,-j], [A;]) as follows:
T = {tl, ...,tn} is a set of tasks to be executed.

* < is a partial order defined on T which specifies operation precedence

constraints. That is, r; < t; signifies that ¢; must be completed before tj can begin.

. [D,-J-] is an n X n matrix of communication data where Dij 2 0 is the amount of

data required to be transmitted from task Litotaskf;, 1<i<n,1<j<n.
* [A;] is an n vector of the amount of computations, i.e., A; > 0 is the number of
instructions required to execute 1, 1<i<n.

The partial order < is conveniently represented as a directed acyclic graph called a

task graph. A directed edge (i,j) between two tasks Y; and ¢ specifies that 7, must be

completed before 1 can begin. Figure 1a shows an example of a task graph consisting of

eight nodes (n=8), where each node represents a task. The number shown in the upper
portion of each nodes is the node number, the number in the lower portion of a node i

represents the parameter A; (the amount of computation needed by task #;), and the number
next to an edge (i,f) represents the parameter D;;. (the amount of communication between
node i and node j). For example, A 1 =35, D;5=10. Tasks are often referred to simply by
their indices (e.g., / may be used rather than ¢ 1)» especially when graph nodes are more

conveniently labeled with integers.

1.0

Figure 1: (a) Precedence graph (b) Branch graph

1. Modeling Conditional Branching

A parallel program can be viewed as a set of tasks and a flow of control and data
through these tasks. A parallel program can be represented using two directed acyclic
graphs -- the branch graph, G = (T, E}), and the precedence graph, H = (T, E,), where T is

the set of n verticies representing the program tasks, E,, is the set of branch edges, and E,
is the set of precedence edges. An execution instance of a parallel program is defined as a
possible set of tasks that are selected for execution at one time for some input. Associated
with each branch edge (u,v) is P(u,v), the probability of having v in the same execution
instance with u. The summation of the probabilities associated with the edges, leaving a
node in the branch graph, is always one.

A branch graph consists of a collection of connected components. Each component
of the branch graph is, in turn, a fan graph. This implies that each node has n independent
nodes with one common parent and one common child. Fan graphs are typically used to
express conditional branching in structured programming, where the independent nodes
represent different alternatives in a branching statement. Figure 1b shows an example of
of a branch graph consisting of 8 nodes which represent a parallel program. The number
inside each node is the node title and the number next to an edge (i,j) represents the
probability P(i,j).

A precedence edge (u,v) implies that task v cannot begin execution until after task
u has completed execution. This edge might also represent data flow between tasks u and
v. Associated with the edge (u,v) is the data size D(u,v). Associated with each task u is
the number of instructions to be executed, INS(u). Thus, task graph in Figure 1a can also
be referred to as a precedence graph. For example, 5 cannot begin execution until after]

has completed execution.

2. Execution and Communication Cost

Given a parallel program model and the description of the target machine that will
execute the program, task execution time and the communication delay can be obtained as

follows:

T;;: the execution time of task i when executed on processor j. It can be computed

A;
as follows: Tij = S_J+Bj

C(ipizjpjz): the communication delay between task i; and i, when they are
executed on processing elements j; and j,, respectively. This reflects the target machine

performance parameters as well as the size of the data to be transmitted and can be
computed as follows:

Suppose that j; and j, are two adjacent processing elements, then the
communication delay of a message sent from task i; running on j; to task i, running on J2
over a free link is:
ili2

+Ij1

C(il, i2’ jl’]2) =
R

Typically, more than one message can be sent from one processor to another using
the same link. This implies that contention delay must be considered. If we assume that we

can estimate the contention delay on the link connecting processors j; and j, as CD;jjjp, the

above formula becomes:

iyiy

C(il’ izsjlajz) = R +Ij] +CDj1j2

J1J2

Finally, we must consider the case where the source and destination Processors are
not adjacent. Suppose that a message from j; to j, is sent through the path j,, k b koenss Ky
J2- It can be noted that the number of hops is z + 1. The communications delay now
becomes:

Although this involves a formidable calculation, consider the case where all

processing nodes have the same I/O co-processors and therefore have identical message

iyiy iyiy

Clipipipip) = g +1j,+CDjy +

+I, +CD, .
. R . Ikz C kz.’?.
jiky k.j,

‘< D"liz
2 R +Iki+CDkiki+l

i=1 k:'ki+1

initiation times 7, and the transmission rate R is uniform over the interconnection network.

The communications delay then reduces to:

D, .
. s . i
Cliysin, iy Jp) = (R“2+1)-(z+1)+c1)m.2

D. THE SCHEDULE

A schedule of the task graph G = (T,A) on a target machine made up of m processors

is a function f that maps each task to a processor with an assigned start time. Formally,
fIT={1,2,....,m}x[0,e) . If fiv) = (i,t) for some ve T we say that task v is
scheduled to be processed by processor p; starting at time ¢. Note that there exists no
u, v e T such that f{v) = f(u) -- two tasks cannot run on the same processor at the same time.
If v < uand fiv) = (it;), fiw) = (j.tp), then t; <t,. Clearly, a schedule f is feasible if it
preserves all precedence relations and communications restrictions. The Gantt chart

provides an informal notion of the schedule, where the start and finish times for all tasks

can be easily shown.

E. PERFORMANCE CRITERIA

In light of the description of the scheduling problem, we would like to find efficient

algorithms for scheduling the tasks on the available processors to optimize some desired

10

performance measure. Several such performance criteria include balancing the
computational load across the target processors and minimizing the completion time of the
schedule. In this thesis, our goal has been chosen to minimize the total completion time of
a parallel program. This performance measure is known as the schedule length, or
maximum finishing time. Schedule length can be described as follows. Given a task graph
G = (TA) and a schedule f on m processors, the length of schedule f of G is the maximum

finishing time of any task in G. Formally, length(f) = Lyax Where 1, = maximum{t + T}

where f(i) = (jt) Vie T,1< j<m. Recall that T; is the execution time of task i on

processor j.

11

12

III. LIST SCHEDULING

A. BACKGROUND

As shown in the previous chapters, optimal schedules can be obtained in very
restricted special cases. These special cases are far different from real world situations. One
may question how we can restrict a parallel computer to have only two processors in the
era of massively parallel architectures with hundreds and thousands of processors, or how
can we neglect the effect of communication delay in distributed-memory systems. To
provide useful solutions to the scheduling problem, restrictions on the parallel program and
target machine representations must be relaxed. Recent research in this area has
emphasized heuristic approaches. A heuristic algorithm produces an answer in less than
exponential time, but does not guarantee an optimal solution [3]. Therefore the near
optimal solutions obtained by a heuristic approach the optimal solution most of the time.
Intuition is most often used to derive heuristics that make use of scheduling parameters that
affect the system in an indirect way. One heuristic is said to be better than another if
solutions approach optimality more often, or if less time is spent obtaining a near-optimal

solution.

B. LIST SCHEDULING

The most common class of scheduling heuristics is list scheduling. In list
scheduling each task in a parallel program is assigned a priority, and a list of tasks is
constructed in decreasing priority order. When a processor becomes available, the ready
task with the highest priority is selected from the list and assigned to that processor. If more
than one task has the same priority, a task is selected arbitrarily. Algorithm 1 presents a
generic procedure of list scheduling.

Algorithm 1

1. Each node in the task graph is assigned a priority. A priority queue is

initialized for ready tasks by inserting every task that has no immediate

predecessors. Tasks are sorted in decreasing order of task priorities.

13

2. As long as the priority queue is not empty do the following:
* Obtain a task from the front of the queue.
* Select an idle processor to run the task.
* When all the immediate predecessors of a particular task are executed,
that successor is ready to be inserted into the priority queue.

Thus, nodes are selected in order according to their priority assignment. The level

and co-level of a task are examples of task priority. We define the following:

* Path Length. The length of a path in a task graph is the summation of the
weights of all nodes along the path including the initial and fina] node.

* Level. The level of a node in atask graph is defined as the length of the longest
path from the node to an exit node (an exit node is the one with no successors).

* Co-Level. The co-level of a node in a task graph is defined in the same way as
a level except that lengths are measured from the starting points of the task
graph rather than from the exit node,

In their paper in 1974, Adam, Chandy, and Dickson conducted an extensive

empirical performance study of five list-scheduling heuristics as follows [12]:

* HLFET (Highest Levels First with Estimated Times). A list schedule in
which the priority of a task is its level.

* HLFNET (Highest Levels First with No Estimated Times). In this list
schedule, all tasks are assumed to have the same execution time. The priority
assigned to a task is its level computed under this assumption.

* RANDOM. A list schedule in which tasks were assigned priorities randomly.

* SCFET (Smallest Co-levels First with Estimated Times). In this list schedule,
the priority of a task is the negative of its co-level.

* SCFNET (Smallest Co-levels First with No Estimated Times). This list
schedule is the same as SCFET except all tasks are assumed to have the same
execution time.

The results of the study showed that among all priority schedulers, level priority

assignment generates the closest to optimal schedules. Highest level first (HLF), which is

14

also known as critical path (CP), was shown to be superior to others since it provided
schedules that are within 5 percent of the optimum in 90 percent of random cases. It also
has been shown that using level priorities will produce an optimal schedule for a task graph
represented by a tree [3]. In tree structured task graphs of equal task execution times, Hu
introduced an optimal algorithm using level (or critical path) assignment [8].

It is import to note that these heuristics do not consider the cost of inter-task
communications. Thus, they are most appropriate for shared-memory parallel processors
where memory access costs are uniformly distributed among the computational elements.
Distributed-memory parallel computers, in contrast, have communication costs which are
determined by the nature of the inter-processor communications network. The question
then arises as to how communication delays may affect list-scheduling heuristics. In the
following section we discuss two problems that are introduced once inter-task

communication is considered.

C. COMMUNICATION ISSUES

In this section we study some of the difficulties encountered when designing
heuristic schedulers for a more general case, where communication delays are considered.
The first problem is due to the trade-off between exploiting maximum parallelism and
minimizing communication delay, while the second problem is due to the alteration of

critical paths of the tasks in a task graph.

1. Parallelism Versus Communication Delay

Considering communication delays in making scheduling decisions introduces a
key difficulty in scheduling parallel programs, the so called max-min problem. This
problem is associated with the trade-off between taking advantage of maximal parallelism
in the task graph and minimizing communication delay. If tasks are allocated to processors
in such a manner as to maximize the amount of simultaneous execution of tasks without
regard to the cost of message transmission, the result may be a program that runs slower on

several processors than it does on a single processor. This case arises when communication

15

costs are high compared to execution costs. Alternatively, when available parallelism is not
completely exploited, available processors may be underutilized.

When there is no communication delay between tasks, all ready tasks can be
allocated to all available processors. The will result in a reduction of the overall execution
time of the task graph. This reflects the assumptions made by earlier schedulers which did
ot consider communication delays. If communications delays are to be included in the list
scheduling heuristic, then scheduling must be based on both the inter-task communication
delay and then time when each processor is ready for execution. It is possible for ready
tasks with long communication delays be assigned to the same processor as their immediate
predecessors. Hence, adding communication delay constraints increases the difficulty of
arriving at an optimal schedule, because the scheduler must examine the start time of each
node on each available processor to select the best one. It would be a mistake to increase
the amount of parallelism available by simply starting each task as soon as possible.
Distributing paralle] tasks 10 as many processors as possible inevitably increases the
communication delay which, in turn, increases the overall execution time. In short, there is
a trade-off between taking advantage of maximal parallelism versus minimizing
communication delay. This problem is called the max-min problem for parallel processing,
It is the goal of current communication delay scheduling heuristics attempt to take

advantage of parallelism, while reducing communication delays.

2. Level Alteration

Another important scheduling problem caused by the introduction of non-zero
communication delays is due to the alteration of leve] priorities, and their impact on critical
path calculation. Any heuristic that uses level priorities or critical path length faces this
problem. The level of a node js defined as the length of the longest path from the node to
the exit node. This length includes all node execution times and communication delays
along the path, Unfortunately, the leve] priority does not remain constant when

Communication delays are considered, since the level of each node changes as the length of

16

the path leading to the exit node changes. The path length varies depending on
communication delay and the communication delay changes depending on task allocation.
Communication delay is zero if tasks are allocated to the same processor and non-zero if
tasks are allocated to different processors. The number of network hops between processors
will also make a difference in computing the communication delay portion of the level. We
call this the level number problem for parallel processor scheduling. As a further
complication, when the target machine processors are not identical the execution time used
in the computation of the level priority again becomes difficult to obtain because the
execution time of a node depends on the speed of the processor that executes that node.

Some heuristics assume identical processors and compute a node’s level as the
summation of the node’s computations along the path to the exit node, excluding the
communication delay. A better approximation of level number may be obtained by
iteration: schedule, then calculate node level, schedule, etc. The time complexity would be
tremendously increased and the resulting level number would still be only an
approximation. Hence, the use of level as priority for scheduling with communication delay
is less accurate than that without communication delay.

El-Rewini and Lewis conducted several experiments to show the effect of using
communication delays in calculating the level of a node in a task graph [13]. This
scheduling heuristic involves adding the communication delay to the execution time when
computing the level of a node. The results of the experiment suggest that for
communication intensive applications the scheduler should consider communication delay
in the scheduling algorithm’s priority; however, for computation-intensive applications,

priority scheduling is insensitive to communication delays of the application.

3. List Scheduling with Communication

In the previous sections, we examined list-scheduling heuristics when
communication is ignored and showed that using the level of a task as its priority is near

optimal most of the time. We also showed two problems that were introduced by

17

considering communication delay in making scheduling decisions. We now consider
heuristics where communication delay is considered. In this section, we give the program
and machine assumptions and terminology that will be used in the rest of this chapter. We
will also show how the level heuristic, originally introduced by Hu, is modified to handle
communication. In this heuristic, which we will refer to as the general list heuristic, task
selection criteria remain the same as described in Algorithm 1. The communication delay
is included in computing the start time of a selected task when selecting a processor, but is
ignored when the level of each task is computed. The processor containing the assigned
task’s immediate predecessors are considered first in an attempt to reduce communication

delay by placing message source and destination tasks on the same processor.

4. Program and Machine Models

In this section, we define our program and target machine models in terms of the

general model introduced in Chapter II. Recall that the target machine model was
represented as the 6-tuple (P, [Pij], [S;1, 1 i) [Bi]’ [Rij]) » While the parallel program
tasks were represented as the 4-tuple (T, <, [D,-j], [A;]). The assumptions are as follows:

Target Machine

*Pi=1,1<i,j<m,(a fully connected system)

*S; = constant, 1 <i <m, (identical processing elements)

*I;=0,1<i<m, (no start-up cost for initiating a message)

*B;=0,1<i<m, (no start-up cost for initiating a task)

. R,-j = constant, 1 < i, j <m, (Same transmission rate)

Program Tasks

* There are no restrictions on the task graph representing the program.

Having identical processing elements, it follows that the execution time, T;jof

A.
task i on processor j will be the same for all processing elements, which is equal to F’
i

18

Assuming that S; = I, we can denote 4; as the execution time of task i, which will also be

referred to as the task size. Having the same transmission rate for all links, it follows that

the communication time for a message sent from task i 7 on processor j; to task i, on

. C e e i
processor jp, C(ij, iy, j}, jo), is equal to —2

. Assuming thatR; . = 1 wecanuse D, .
i J1J2 hiy
1J2

as the communication delay.

5. Terminology

In this section, we define some of the terms that will be used to describe the
heuristics in the following sections of the chapter.

* The ready time of a processor is the time when the processor has finished its
assigned task and is ready for another task.

* The message ready time of a task is the time when all the messages to the task
have been received by its processor. This time represents the largest
communication delay of all the messages sent from the task’s immediate
predecessors. The immediate predecessor that causes the longest
communication delay is called the latest immediate predecessor (LIP).

* The ready queue is a queue of ordered ready tasks. Tasks are ordered
according to their levels; the task with the highest level is scheduled first.
Tasks at the same level are ordered according to the number of immediate
successors; the task with the greatest number of immediate successors is
scheduled first

* The assigned task (AN) is the highest-priority task selected from the ready
queue.

* The idle time slot is the time interval between the ready time of a processor and
the assigned task’s starting time.

* The assigned processor is the one chosen to execute the assigned task.

* The first ready processor (PRF) is the first processor in the set of all

processors to become ready after the assigned task is scheduled on the

19

assigned processor.

6. General List-Scheduling Heuristic

In this section we give the details of the general list heuristic with communication.
This heuristic tries to minimize the total elapsed time to execute all tasks by minimizing the
finishing time of each assigned task. First the level of each task in the task graph is
calculated and used as each task’s priority. The ready queue is then initialized by inserting
all tasks with no immediate predecessors into the ready queue. Then, the task at the top of
the queue (the task with the highest priority, i.e., highest level) is assigned to a processor.
The processor is selected by the selection routine locate_p. For the first task, any
processor can be selected. The heuristic continues assigning tasks and updating the ready
queue until all the tasks in the task graph are assigned. Each time a task is assigned, the
assigned processor is marked. The last task assigned to the marked PRF is called the event
task and it is used to update the ready queue. Each time an event task is selected, the PRF
is unmarked. Hence, the event task cannot be used to update the ready queue a second time.
A processor is marked each time a new task is assigned to it and unmarked each time an
event task is chosen.

The Update_R_Queue routine updates the ready queue by inserting a new ready
task chosen after the assignment of an event task. The new ready task is then selected by
decrementing the number of immediate predecessors of the immediate successor tasks of
the event task is by one. If the number is zero, that immediate successor task is chosen as
the new ready task and is inserted into the ready queue. All immediate successors of the
event task are then decremented. The new ready tasks are placed in the ready queue
according to their priority -- maintaining the order of the queue.

A task is assigned by getting a ready task from the front of the ready queue. Thus,
the task with the highest level and the maximum number of immediate successors is
assigned first. Next, the processor selection routine, Locate_p, is used to select a processor,

and the Assign_Task routine assigns the task to the selected processor.

20

The routine Locate_p selects the assigned processor that has the earliest start time
for each assigned task considering the communication delay. The routine assign_rask
assigns a task to the selected processors at its start time calculated by Locate_p. Changes
in these two routines are needed to improve the general heuristic, as we will show in
subsequent sections. The heuristic is given in Algorithm 2,

Algorithm 2.

Input:

* Precedence graph, H = (T, Ep)

* m, number of processors in the parallel system
Output:

* GC, Gantt chart consisting of an array {1,..., myJ for each processor in the system

(list of tasks ordered by their execution time on a processor, including task start

time and finish time)

begin
level_graph(H) Calculate level number for each task in H
Init_Gantt(H) Reset Gantt chart of each pbrocessor to nil
Init_R_Queue(RQ) Insert all tasks having no immediate predecessors
into the ready queue, in order by their level number
Get_Task (AN, RQ) Get AN, assigned task, from front of the Ready Queue
Assign_Task (AN, 0, GC, 1, RQ) Assigns AN to processor 1 at time 0
repeat
Update_R_Queue (RQ, AN, H) Update ready queue using assigned task
if RO not empty
Get_Task (AN ,RQ) Get next task from ready queue
Locate_P (AN, GC, Py,ST) Schedule on processor with earliest ST

Assign_Task (AN, ST, GC, PL,RQ)
until all tasks in H are assigned
end

D. THE MAPPING HEURISTIC (MH)

The mapping heuristic (MH) proposed by El-Rewini and Lewis [14] is a modified
list-scheduling technique. MH considers severa] real-world parameters that are neglected
in the original list-scheduling heuristics covered in the previous section. MH models

several target machine parameters such as interconnection topology, processor speed, link

21

transfer rate, and contention delays. Like other list schedulers, MH uses the level of each
node in the task graph as its level priority. But since communication is considered and
processors may have different speeds, we face the problem of level alteration discussed
earlier. In MH, the user is given the choice of whether communication cost is included in
calculating the level of each node.

MH uses the general model described in Chapter II to model the parallel program
and the target machine. In MH, we assume that the transmission rate over a link connecting
any two adjacent processors is the same and equals R. The time to initiate message passing

is the same for all processors and is equal to /. Recall also that T;; is the execution time of
task i when executed on processor Jand C(iy, iy, jy, j,) is the communication delay between
tasks i; and i, when they are executed on processing elements j; and j, respectively. MH
uses the given system parameters to compute the execution time and the communication

delay as follows:

A,

- _ .
Tl.j = Sj+BJ

.o, Di,i2
C(ys iy, jiody) = (‘—+1)-H-1j2+CD

R J J1Ja

where H jij, Tepresents the number of hops between processors j; and j,, and

CD iria is the contention delay on the route from J110j>, Inthe following section, we discuss

the routing tables in which we maintain the estimated values of H i1 and CD vy

MH schedules the task with the highest level first and ties are broken in favor of the
task with the largest number of immediate successors in the task graph. When a task is
ready, i.e. all its predecessors have been scheduled, it is scheduled on the processor with
the earliest finish time. The finish time of atask is determined by considering the following:

1. Processor speed

2. Link transfer rate

22

3. Message passing route
4. Number of hops
5. Delay due to contention
The details of how to compute the finish time of task ¢ on processor p are given as
follows:
There are four events that need to be considered by MH:
1. a task is ready
2. a task is done
3. a message is sent
4. a message is received
A task becomes ready as soon as its last unfinished immediate predecessor
completes execution. When a task is ready, it can be scheduled for execution. When a task
finishes execution on its assigned processor, the number of unfinished immediate
predecessors of its immediate successors is decremented. When the number of unfinished
immediate predecessors of a task becomes zero, the task is ready. When a message is sent,
the route from the source to the destination becomes busy, carrying the message for a
certain amount of time. Similarly, when a message is received, the route becomes free.
When either of these events take place, the status of the machine interconnection network
will have to be updated. This task is accomplished by updating the routing tables that we
will examine next.
MH takes two inputs:
1. the parallel program task graph
2. the description of the target machine:
* the number of processors
* the interconnection network
* the speed of each processor
* the link transfer rate

* the message passing initiation cost

23

It constructs and maintains routing tables to hold contention information. MH uses
an event list to handle the four events given above. The high level description of the MH
scheduling technique is given in Algorithm 3.

Algorithm 3.

Input:

* Precedence graph, H = (T, Ep)

* m, number of processors in the parallel system
Output:

* GC, Gantt chart consisting of an array {1,..., m} for each processor in the system

(list of tasks ordered by their execution time on a processor, including task start

time and finish time)

begin
level_graph (H) Calculate level number for each task in H
Init_Gantt (H) Reset Gantt chart of each processor to nil
Init_R_Queue (RQ) Insert all tasks having no immediate predecessors
into the ready queue, in order by their level number
Get_Task (AN, RQ) Get AN, assigned task, from front of the Ready Queue
Assign_Task (AN, O, GC, 1, RQ) Assigns AN to processor 1 at time 0
repeat
Update_R_Queue (RQ, AN, H) Update ready queue using assigned task
if RQ not empty
Get_Task (AN, RQ) Get next task from ready queue
Locate_P (AN, GC, P;,ST) Schedule on processor with earliest ST

Assign_Task (AN, ST, GC, PL, RQ)
until all tasks in H are assigned
end

1. Routing Tables

Since a communication link can be shared by more than one message, the
contention delay must be considered in estimating the communication time. There are two
time delays that contribute to communication delay:

1. the time delay incurred in transmitting data over an empty route

2. the queuing delay due to multiple messages sent through the same route

(contention delay).

24

To compute the delay due to contention for each processor in the system, MH
maintains a routing table that has contention information indexed by all other processors.
In each processor’s table, there is an entry for every other processor that contains three
parts:

1. the number of hops H to reach the processor

2. the preferred outgoing line to use for that destination 7,

3. the communication delay due to contention CD

Initially, MH uses the shortest path between any two processing elements to
determine the number of hops and the preferred outgoing tine. If there is more than one
shortest path, a path is selected arbitrarily. Initially, the contention delay is zero. We use H;;
to refer to the number of hops between processors P; and P; that could be longer than the
shortest path. L; and CD;; are used similarly.

The routing tables are used to obtain the best route to send a message, and to
compute the contention delay that guides the selection of the best processor for a certain
task. These tables are updated during scheduling so the decisions made in choosing a route
to send a message or in selecting a processor to run a task are based on the information
describing the current traffic. Clearly, the more often the tables are updated, the more
accurate the view of the current traffic will be. Thus, there is a trade-off between having a
real view of the traffic and the complexity of the update procedure. MH updates the tables
when a task starts sending a message to another task on a different processor, and when a
message arrives at its destination. These two Cases are important because the first causes a
route to be busy for a certain amount of time, while the second frees a route for a subsequent
transmission. Only the tables associated with processing elements where the traffic status
has changed should be updated. The tables of the processors on the communication route
are updated first using the Direct_Update routine. Then, the tables of the neighboring

processors that have been affected and have not yet been updated are updated using the

Indirect_update routine.

25

The update routines used in MH operate as follows. Suppose that task t; on
processor P; sends a message to task I on processor P,. In this case, the tables of the
processors on the route from P, to P, should be updated. The table associated with
processing element P, is not updated because the route from P, to other processors has not
been affected. Similarly, if ¢, on processor P, receives a message from ¢] On processor P,

all of the tables on the route from P 1 10 P> except P, are updated.

26

IV. SCHEDULING NON-DETERMINISTIC TASK GRAPHS

A. BACKGROUND

Recall that several restricted versions of the problem of scheduling deterministic
task graphs are computationally intractable. In order to obtain a static schedule for a given
non-deterministic task graph the following procedure can be used:

1. Generate all possible execution instances of the parallel program that

contains branching.

2. Construct a deterministic task graph for each execution instance.

3. Obtain a schedule for each instance using one of the deterministic scheduling

heuristics presented in the literature.

4. Merge all these schedules into one unified schedule that preserves all the

precedence relations of the precedence graph.
What is the major problem with this procedure? In the worst case there are too
many execution instances for a non-deterministic parallel program. For this reason, a
method needs to be found to reduce the amount of non-determinism in the parallel program,
i.e. reduce the number of possible execution instances before applying the multi-phase

approach.

B. REDUCING THE DEGREE OF NON-DETERMINISM

In practical applications, we noticed that the alternatives of several conditional
branches might have many features in common. These common features include the way
in which the alternative tasks communicate with other tasks in the program. Also. the
amount of computation needed by the alternative tasks may be comparable.We exploit this
property in order to reduce. or hopefully remove the non-determinism associated with
conditional branching. Our ultimate goal is to reduce the probabilistic representation of the
parallel program into a deterministic one, if possible. This can only be achieved in some
special cases where all alternatives in the branch graph are very similar. However, in the

general case, the basic idea is to find some tasks with common properties in order to be able

27

to represent several tasks by only one single task. These properties express the way each
task is related to other tasks in the program. A task can be related to other tasks in several
ways, e.g., a precedence relation, data dependency. and occurrence in some execution
instances. In order to achieve the goal of representing several tasks by only one task, they
have to be very similar. In other words, these tasks should have the same relationships with

the rest of the task in both the branch graph, and the precedence graph.

1. Similarity in Non-deterministic Task Graphs

Fact 1. Given a branch graph G = (T, E;), and u, v € T, if u and v are similar, then
there exists no execution instance that contains both of them.

Fact 2. Given a branch graph, G = (T, Ep), and u,ve T, if u and v are identical,
then an optimal schedule for an execution instance El,, containing u can be obtained by
replacing v by u in an optimal schedule for an execution instance, EI,, containing v, where

(EI,VEIL)~ (EI,NEI) = {uv}

Recall that the main goal of the graph theoretic step is to reduce the degree of non-
determinism in the task graph and to construct a reduced graph model from the original
parallel program model. Although the following lemma deals with a rather restricted type
of task graph, it inspiyes the concept of reducing the non-determinism in parallel programs.

LEMMA 1. Given a branch graph G = (T, Eb), if every pair of similar nodes are
identical, the branch graph can be reduced to exactly one execution instance, called
the representative execution instance (REI). An optimal schedule for the tasks contained in
any execution instance can he obtained from an optimal schedule of the tasks contained in
the REIL

Proof. The REI can be constructed from the branch graph by removing all nodes,
except one, from every set of identical nodes. The task graph that corresponds to the
obtained REI is isomorphic to the task graph that corresponds to any possible execution

instance of the program. Consequently, using the same scheduling technique, all possible

28

execution instances are identical. Given the optimal schedule of the tasks of the REI, we
can construct an optimal schedule for other tasks as follows. If task v € REI is scheduled
On processor p, then any identical node of v will be assigned to the same processor p with

the same execution order. Recall that two identical nodes cannot belong to the same

execution instance (Fact I).

2. The Reduced Task Graph

It follows from Lemma 1 that if every set of similar nodes are identical, then non-
determinism can be removed completely from the parallel program. If only
some of the similar nodes are identical. then a reduced task graph may be constructed from
the original task graph by replacing every set of identical nodes by a single
representative node. In spite of the fact that this idea may be useful in reducing the amount
of nondeterminism in parallel programs, it will not be very effective in general. The
requirement of being identical is too restricted and will not be satisfied in most of the
practical parallel programs It may be more effective if we relax this concept to allow some
dissimilarities among the set of similar nodes. _

There are three different types of possible dissimilarities among the alternative
tasks of a branching statement:

1. the set of successors and predecessors in the precedence graph.

2. the cost of communication between the tasks and any common successor or

predecessor in the precedence graph.

3. the amount of computation needed for execution.

Using these three measures. we can assume that a set of similar nodes are almost
identical if the differences among its nodes are within some predetermined tolerance

parameters.

The preprocessing step is then controlled by three parameters, o, B, Y which we call

the tolerance parameters. When the amount of dissimilarities for a set of alternatives is

29

bounded by the values of o, B, Y, these alternatives will be treated as if they are identical.
The formal meaning of the tolerance parameters is described in Definition 6.

Definition 6. Given the tolerance parameters o, B, v, two nodes u and v are said to

be almost identical if it satisfies the following conditions:

* max(|IMP(u)- IMPﬁv)l, IMP(v) - IMP(u)),
[IMS(u) - IMS(v) MMS(v) — IMS(u))) < o

* abs(D(x,u)-D(x,v))<B Vx where (x,u) and (x,v) e Ep

abs(D(u, y)-D(v,y))<B Vy where (uy) and (v,y) € Ep

* abs(INS(u)-INS(v))<¥y

In other words, the tolerance parameters provide bounds on the differences between
two similar nodes to be treated as identical nodes. The parameter o, provides a bound on
the difference between the number of children and the number of parents of the two similar
nodes. The parameter provides a bound on the difference between the data size transferred
to and from the two nodes. Finally y provides a bound on the difference between the
required execution time of the two nodes.

It follows that the tolerance parameters, which are specified by the parallel program
designer, determine the éxtent to which the identical relationship will be forced on
similar nodes that are not identical. Each set of almost identical nodes will then be replaced
by a single node in the program model -- the branch graph and the precedence graph. This
process will result in another, hopefully smaller version of the program model denoted
by the reduced program model. The reduced program model consists of the two directed
graphs -- the reduced branch graph and the reduced precedence graph. The multi-phase
technique presented in Section C will then be applied to the reduced graph model of the
program, which usually contains a smaller number of alternatives, and in turn a smaller
number of possible execution instances, and thus a lesser degree of non-determinism.

Algorithm 1 describes how to obtain the reduced program model from the original

program model.

30

It is worth mentioning that the second step of the algorithm, in which the maximal
set of almost identical tasks is obtained, is a complicated step. This is mainly due to the fact
that unlike the relation identical, the almost identical relation is not transitive. It can be
shown that, given the value of the tolerance parameters, the problem of identifying the
minimum number of almost identical sets of tasks is NP-hard. A simple greedy algorithm
can be used to find some maximal sets of almost identical nodes such that the number of

such sets is close to the optimal minimum number.

Algorithm 1.
Input:

* Branch graph, G = (T, Ey)

* Precedence graph, H = (T, Ep)

* Tolerance parameters a, B, y
Output:

* Reduced branch graph, GI = (G1, E,)
* Reduced precedence graph, HI = (T1, E.)

begin

read the values of the tolerance parameters a,B,y.
determine all maximal sets of almost identical nodes
for every set S of almost identical nodes in T and || 22 a0
begin

let a be the parent of any node in S

let t be the child of any node in S

modify the branch graph as follows

begin

Tl =Tu {x} add a single node x that represents all nodes in S

Ep = EpU {(s2) (x0)
P(ux) = ZP(s,y) Vye s

Pxp) =1

Tl = T-S remove al1 nodes of s along with their incident edges

end
modify the precedence graph as follows

31

begin
T1 = T U {X} add a single node x that represents all nodes in S

INS(x) = max(INS(y)) Vye s

Erp—>Epu{(u,x)} where U is a parent of any node ye S

D(u,x) = max(D(u,y)) Vyes for any node ye S

Erp = Epu{(x,v)} where v is a child of any node yE S

D(u,v) = max(D(y,v)) Vy€ s for any node ye S

Tl = T—S remove all nodes of s along with their incident edges
end

end for
end

Example 1. We apply Algorithm I on the program model given in Figures 3 and 4.
We assume that the tolerance parameters, o, B, v, are given the values 1, 5, and 10,
respectively. Studying the program model. one can see that there are only two non-
singleton similar sets of tasks, {2, 3} and (6, 7, 8}. Comparing the dissimilarities of all
possible subsets of similar nodes with the tolerance parameters. We can reduce nodes 2 and
3 to a single node 23 with execution time equaling 12. Using the above tolerance values.
only nodes 2 and 3 may be reduced to one node. The value of D(5, 23) will be assigned the
value of max(D(5, 2), D(S, 3)) which is equal to 15 in order to guarantee the feasibility of
the final schedule. The reduced program model is shown in Figure 3. Not that there are only

three possible execution instances of the reduced model. compared to six instances in the

original model.

C. THE MULTI-PHASE APPROACH
In this step, a heuristic algorithm is applied to the reduced task graph in order to

obtain a static schedule for the original non-deterministic tagk graph. Several branch-free
(deterministic) task graphs are generated to represent all execution instances of the parallel
program. Each task graph is scheduled using one of the static scheduling techniques that

can deal with branch-free graphs, and all the generated schedules are merged into a unified

32

one In our experiments we used the MH algorithm to obtain a static schedule for each
execution instance. If the number of possible execution instances is not too large, all
possible instances are generated and the corresponding task graphs are scheduled.
However, if the number of possible instances is exponential, then some of the execution
instances are considered. In this case, we select the execution instances that are among the
most likely ones and cover all the program tasks. i.e. each task will be included in at least
one execution instance. The details of the generation process are given in Section IV.1.

This algorithm is divided into four phases:

1. Generate some (all) possible execution instances of the branch graph.

2. For each execution instance, the corresponding task graph is constructed.

3. A schedule for each constructed task graph is obtained in the form of a Gantt
chart.

4. A unified schedule is found by merging all the charts obtained in phase 3 The
following procedure summarizes the whole process The details of the

generation process are given in Sections 1 - 4.

procedure MPA

begin
Generate Generate some possible execution instances
Construct Construct a task graph for each generated execution instance
Schedule Produce a schedule for each constructed task graph
Merge Merge all produced schedules into a unified one
end

1. Phase 1: Generate

To schedule task graphs with branches, one might need to consider all possible
execution instances of the reduced program model. In general, the number of possible
execution instances of a program can be exponential -- and considering all the possibilities
could be computationally expensive. However, considering all the possible execution
instances might be feasible in some cases. particularly when the number of all instances is

polynomial. A typical example for such a case is bounded-height branch graphs. Bounded-

33

height branch graphs are the graphs in which the height of each component is bounded by

a constant s. The number of possible execution instances in such a graph is polynomial and

of order 0(cbh), where c is the number of connected components of the branch graph and
b is the maximum number of children of any node in the graph. In these special cases. all
possible instances are generated and the corresponding task graphs are scheduled. In
general, when the number of execution instances is exponential, we introduce an algorithm
that generates a smaller number of execution instances which cover all the tasks in the
program. The selected instances are the ones which have the highest probability, with the
restriction that each program task is included in at least one instance.

Given a branch graph G = (T, Ey), we introduce an algorithm that finds the most
likely set of execution instances SetEl = (EI}, EI, ..., EI,,} that covers all program tasks.
Each execution instance EI,. consists of a set of tasks {vy, vy, ..., vy}, where k; is the number

of tasks included in instance EI. It can be observed that SerEl covers the set T iff

The algorithm is partitioned into two parts: evaluating the task probability p(z) for
every task ¢ and generating the set of execution instances SetEl. In this algorithm a set of
execution instances that cover all the tasks is found. Every task ¢, with () =1 is
included in all the execution instances. The most likely execution instance, which is the
instance with the highest probability, is considered first, and all the nodes in that instance
are marked. We then consider the most likely execution in- stance among the unmarked
nodes and this process is repeated until all nodes are marked. The details are given in
Algorithm 2.

Algorithm 2.

Input:
* Branch graph, G = (T, E,)
* Precedence graph, H = (T, Ep)

34

Output:

* Set of execution instances, SetEl

begin

Compute the probability that a task t will be executed H(t)
forall te T do

begin
let IMP(t)= (vl v2, .., vm} be the set of immediate predecesors of
tin G
if IMP = @ then)« 1 t is a source node

else |L(?) « 2 P(Vi,t) : u(Vi)
i=1
end

Generate the set of execution instances with highest probability that
covers all tasks

SetE] «— @

repeat

El— @

for every connected compnent in the Branch Graph do
begin

let ¢t be the source node
El < EIv {1t}
repeat
let IMS(t) be the set of all immediate successors of t
if all elements in IMS(t) are marked then
El «EIU {1}, where u(u)=p(x)Vxe IMS(t)

EI < EI'U {t} ,where p(u) 2 pu(x)
V(unmarked)x € IMS(t)

mark u
te—u
until IMS(t) = O
end
SetEl « SetEI U EI
until all nodes are marked

end

2. Phase 2: Construct

In this phase, we construct a precedence task graph for each execution instance
generated in Phase 1. Each task graph consists of the nodes given in the corresponding

execution instance and the precedence relations among them. It also shows the amount of

35

computation needed at each node as well as the size of the data messages passed among the

nodes. For each generated execution instance EJ, an instance task graph ITG = (ELLE p)

gives the tasks and their precedence relations in the execution instance where EI < T and

E p. S E b Recall that Ep is the set of edges in the precedence graph H = (T, E,). An edge

(uv)e E » ifu,ve EI and (u,v) e E b The values of the parameters INS(*) and D(* *)

remain the same as given in the original precedence graph. The steps to produce a set of
instance task graphs, denoted by SesITG, are given in Algorithm 3.
Algorithm 3.
Input:
* set of execution instances, SetEl
* precedence graph, H = (T, E,)
Output:

* set of instance task graphs, SetITG

begin

Generate a set of instance task graphs
SetEl « @

for every generated execution instance EI do
begin
Ep, «o
Ep (—Ep U (4,V) for every pair (u, v)€ EI and (u,v)e Ep
A §
let ITG = (EI,EP)
s

SetlITG « SetITG U ITG
end

3. Phase 3: Schedule

Each task graph generated in Phase 2 can be scheduled independently using a static
deterministic scheduler. In our system, we use the MH static scheduling heuristic that was

introduced by El-Rewini. MH takes a task graph and a target machine description as its

36

input and produces a schedule in the form of a Gantt chart. Communication cost and target
machine topology are considered in making scheduling decisions. Given an instance task
graph and a target machine description, a schedule in the form of a Gantt chart will be fed
to the merge algorithm, described in Phase 4, in order to obtain a unified schedule. The
information given in any Gantt chart can be represented using two functions P(t) and O(1).
For each task ¢, the functions P(t) and O(t) indicate the processor assigned to task ¢ and its
order of execution, respectively.

The output of this phase is a set of k Gantt charts resulting from scheduling &
different instance task graphs of the program. Each Gantt chart g is expressed in terms
of the functions Pg(t) and Og(t) for each task ¢. Having Pg(1) = - 1 implies that ¢ does not

belong to the corresponding execution instance EI ¢- Associated with each Gantt chart g is

the probability of the occurrence of Elg, denoted by prob(g). The probability of occurrence

of Elg can be computed as follows: prob(g) (—HP(u,v) for all (u,v)e E , and

u,ve EI 2" Algorithm 4 shows how to produce a set of Gantt charts, denoted by SetIGC.
Algorithm 4.
Input:

* Set of instance task graphs, SetITG
* Branch graph, G = (7, E,)
Output:

* Set of Gantt charts, SetGC. (Formally, Py(1), Off1), 1<g< |SetGC|)
* The probability of occurrence, prob(g), 1 < g <|SetGC|

begin
SetGC P
for g = 1 to |SetITG| ao
begin

Generate the probability of occurrence
prob(g) « HP(u,v), Y(u,v) e E, ana u,ve taskgraph G

Generate a schedule for every task graph

37

(Pg(t),Og(t)) €« Schedule(taskgraph G) using branch-free

scheduling technique
SetGC « SetGC v (Pg(t),Og(t))
end

end

4. Phase 4: Merge

In this phase, a number of Gantt charts are combined into a unified schedule. The
schedule is given in the form of processor allocation and execution order of the tasks
allocated to the same processor. The merge algorithm produces a unified schedule
represented by P(t) and O(t) for each task t. The functions P(t) and O() are computed using
Pg(t), Og(t), and prob(g), 1 < g <|SetGC|.

The merge algorithm consists of two steps: task allocation to compute P(z) and task
ordering to determine O(1), 1<t<M. The allocation of each task is obtained by
considering all Gantt charts as shown in Algorithm 5. We use the summation of the
probabilities, as well as the number of times a task is assigned to the same processor, to
determine the allocation of that task. The execution order of each pair of nodes assigned to
the same processor is obtained by considering all the Gantt charts in which both tasks are
assigned to the same processor. In the event when there are two different orders for the two
tasks, a weighted majority function is used to determine the order in the unified schedule.
The weighted majority function is defined as the summation of the probability of
occurrence as shown in Algorithm 5. If the two nodes do not appear on the same processor
in any Gantt chart, their order is determined by considering their precedence relation, if
any, in the original precedence graph. Otherwise, the order is determined randomly. The
detailed steps that determine the allocation and the order of execution in the unified
schedule are given in Algorithm 5.

Algorithm 5.
Input:

* Set of Gantt charts, SetGC. (Formally, Py(1), Og(1), 15 g < |SetGCl)

38

* The probability of occurrence, prob(g), 1 < g <|SetGC|
Output:

* A unified schedule P(t) and o)

Task Allocation

Let A,(1) = number of times that Pyt)=p, 1<g<|SetGC|
|SetGC|

Let Bp(t) = Z prob(g) , when Pyt)=p
g=1

P(0) = {jI(Bj(.4,(1) 2 (B,(1).A,(1) (1 < TS NY)}

Task Ordering
for p=1] toN do
for each pair 4 tj) such that P(t,-)=P(tj)=p do
begin
weight « 0
for g=1 to |SetGC(C| do
if Pg(t,-)=Pg(tj)=p then

if O,(1) < Oy(t;) then
weight < weight — prob(g)
else
weight < weight — prob(g)
if (weight>0) or ((ti’tj)e Ep) then
L <plj <p is the order on p
elgseif (weight < 0) or ((ti’tj)e Ep) then

l:" <P ti
else
Order is picked randomly
end
end
end

39

Example 2. We consider the reduced program model given in Figure 1. Since non-
singleton similar sets still exist after applying the graph theoretic approach, all four phases
of the multi-phase approach should now be applied on the reduced program model. The
output of each phase of the four phases is given below.

Output of Phase 1. It can be observed that the reduced program model has only
three execution instances as opposed to six in the original model. If we assume that the
height of the branch graph is bounded, then all possible execution instances are generated
as follows. Eli is the set of tasks forming execution instance i.

El;={1,23,4,5,6,9}
El,={1,23,4,5,7,9}
El3={1,23,4,5,8,9}
The probability of occurrence for the execution instances are
prob(El;) =0.7
prob(Ely) =0.2
prob(El3) =0.1

Output of Phase 2. In this phase. we construct an instance task graph for each
execution instance generated in Phase 1. The task graphs are given in Figures 7-9

Output of Phase 3. A Gantt chart for each instance task graph is obtained using a
branch-free scheduling technique. Figures 6-8 show all instance task graphs and their
corresponding Gantt charts.

Output of Phase 4. According to Algorithm 5, given the probability of occurrence

of each execution instance and the corresponding Gantt chart, a unified schedule is
obtained as follows.
* Allocation:
P(1) =P, P(S)=P, P@®)=P
P23)=P, P(6)=P; P9 =P,
P4) =P, P(N =P,

40

¢ Order:

Processor Py Processor P,
o=1 o) =1
0(6)=2 0(23)=2
oM =3 0o4) =3
o®)=4
09 =5

Note that the order between tasks that do not occur in the same execution instance

is meaningless.

41

42

V. THE PROBABILISTIC MERGE HEURISTIC

A. DESIGN CONSIDERATIONS

In chapter IV, we examined two techniques proposed by El-Rewini and Alj to
statically schedule non-deterministic task graphs. In the first approach, an attempt is made
to reduce the degree of non-determinism by exploiting similarities among nodes in the
same execution instance. Yet we have found that, unless the tolerance parameters «, 3, y
are quite large, little reduction of the task graph occurs. We should also consider that unless
all non-determinism is removed from the precedence graph, we are still faced with the
problems of statically scheduling non-deterministic task graphs. While the reduction phase
approach has definite merits as a pre-processing step for further scheduling techniques, we
find that it provides insufficient benefits as a solitary scheduling algorithm.

The second approach to scheduling non-deterministic task graphs was the multi-
Phase scheduling algorithm. In this approach, all possible execution instances are
generated, individually scheduled with MH, and then merged into a unified schedule using
a weighted majority function. This approach produces acceptable scheduling results on a
wide variety of test cases. As is often the case with scheduling heuristics, however, there is
a great computational expense in applying the multi-phase approach. First, consider that the
multi-phase algorithm (as well as the reduction-phase algorithm) relies heavily on the
generation of all probabilistic execution instances from the branch graph. In general,
however, the number of execution instances in a non-deterministic branch graph is
exponential with respect to the number of constituent tasks. El-Rewini and Ali consider a
special case, the bounded-height branch graph, in which the height of the task graph is

bounded by a constant 4. The number of possible execution instances in such a graph is

polynomial of order O(cb"), where c is the number of connected components of the branch

graph (number of tasks), and b is the maximum number of children at each node. It should

be obvious that a scheduling algorithm containing a step with a complexity of O(cb") will

not be scalable to a parallel Programs comprising a large number of tasks. As shown in

43

Figure 2, the time to compute the multi-phase approach quickly becomes unmanageable,
as the number of nodes in the branch graph is increased. El-Rewini and Ali suggest that one
should select a set of execution instances that are among the most likely ones and cover all
the tasks, i.e., each task will be included in at least one execution instance. Yet this step,
which involves searching an arbitrary tree structure for the n highest probability paths, is
known to be NP-Comoplete [6]. It may be interesting to the reader that the actual generation
of the execution instances comprises only a small portion of the computational complexity
of the multi-phase approach. It is the scheduling of each execution instance that accounts

for the majority of the computational requirements.

16

Probabilistic I;/Ierge Heuristic ~~—
 Multi-phase Approach -=—

3

g

3

g 8

i /
=

T /
S

w

10 20 30 40 50 60 70 80 90 100
Number of nodes

Figure 2: Scheduling Runtimes

B. THE PROBABILISTIC MERGE HEURISTIC

We propose an alternative approach to statically scheduling non-deterministic task
graphs. While this approach can also benefit from the reduction phase, the algorithm does
not require the generation of the execution instances from the branch graph. Our approach
involves two fundamental modifications to the classical list scheduling algorithm. We have

applied these modifications to the MH scheduling algorithm.

1. Level Calculation

The first phase of the probabilistic merge heuristic involves a modification of the
task priority assignments of the classical list scheduling algorithm. The level of each node
is computed as before, a function of the length of the critical path to that node and the sum
of the communications along that path. However, we then weight the resulting priority by
the conditional probability of the execution of the node. This will weight the ready queue,
so that the highest probability tasks tend to be scheduled first, and lower probability tasks
tend to be scheduled last. The principle behind this design decision is that often there is a
single execution instance which has a very high probability, followed by other lower
probability execution instances. We therefore optimize the schedule around this most

probable execution instance, and allocate the less likely tasks to the remaining system

resources.

2. Probabilistic Merging

As we generate the level assignments for each task, we record a list of all other
nodes which are not in the same execution instance and have computational requirements
at least as large as the current task. While it may seem that this step again requires the
generation of all execution instances, it is implemented by generating the transitive closure
of the branch graph, a function with a complexity of O(|V| - |E|), where V is the number
of nodes, and E is the number of edges. To determine if two nodes exist in the same

execution instance, one merely checks if an arc exists between the two nodes in the

transitive closure.

45

We then schedule the tasks according to their level priority with the MH scheduling
algorithm. Every time a task becomes ready, however, we first examine the list of nodes
which are not in the same execution instance. If there is a node which is not in the same
execution instance and has already been scheduled, we examine its suitability for
probabilistic merging.

There are three criteria which must be met in order to merge two nodes in the Gantt
chart, without violating the data dependencies in the precedence graph:

1. the nodes must not be members of the same execution instance

2. the candidate node must fit within the time slot of the node which has already

been scheduled.

3. the start time of the previously scheduled node must not be earlier than the

candidate node.

The first criteria ensures that the tasks must not be members of the same execution
instance. This was guaranteed when the candidate list was originally generated, by using
the transitive closure test. The second criteria requires the candidate node fit within the time
slot of the node which has already been scheduled. Since level priority calculations include
task size, the earlier scheduled tasks will tend to be larger than later tasks. Thus, the
containment test will often succeed. The final criteria ensures that the start time of the first
node must not be earlier than the second node. This is necessary to preserve data
dependence relationships in the precedence graph.

The resulting algorithm traces down the list of nodes which are candidates for
probabilistic merging, attempting to satisfy all three conditions. If no node matches these
conditions, the current node is scheduled normally, occupying its own slot in the Gantt
chart. If there is a previously scheduled node which matches these conditions, the current
node is added to the list of possible execution instances for that time slot in the Gantt chart.

The subsequent schedule would be implemented on the target parallel computer by
loading all conditionally executed tasks, which have been merged into a single slot on the

Gantt chart, onto a single computational node. At runtime, a decision will be made as to

46

which execution instance is active, and the corresponding task in the conditional task list
will be executed.
The steps detailing the Probabilistic Merge Heuristic are shown in Algorithm 1.
Algorithm 1.
Input:

« Branch graph, G = (T, E,)
* Precedence graph, H = (T, Ep)
« m, number of processors in the parallel system
Output:
« GC, Gantt chart consisting of an array {1,..., m} for each processor in the system
(list of tasks ordered by their execution time on a processor, including task start

time and finish time)

begin
Plevel_graph (H) Calculate level number for each task in H,
weighted by probability of execution
Init_Gantt(H) Reset Gantt chart of each processor to nil
Init_R_Queue (RQ) Insert all tasks having no immediate predecessors
into the ready queue, in order by their level number
Get_Task (AN, RQ) Get AN, assigned task, from front of the Ready Queue
Assign_Task (AN, O, GC, 1, RQ) Assigns AN to processor 1 at time 0
repeat
Update_R_Queue(RQ,AN,H) Update ready queue using assigned task
if RQ not empty
Get_Task (AN, RQ) Get next task from ready queue
Find_merge (AN,GC, Py, ST) Attempt to merge task with existing task
Locate_P(AN,GC, Py, ST) Otherwise, schedule on processor with
earliest ST
Assign_Task (AN, ST,GC, PL,RQ)
until all tasks in H are assigned
end

Figure 3 shows the schedules resulting from scheduling the example branch graph
and precedence graph in Figure 1. Figure 3a shows the schedule generated by scheduling
the branch graph and the precedence graph with the multi-phase approach. The resulting
probabilistic schedule runs with a critical path of 44 seconds. Figure 3b shows the schedule
from the same branch graph and precedence graph, with the level weighting phase of the

probabilistic merge heuristic. The resulting probabilistic schedule runs with a critical path

47

length of 40 seconds, an improvement of 10%. Figure 3c shows the final schedule after
probabilistic task merging has been performed. This final schedule runs with a critical path
length of 33 seconds -- an overall improvement of 33%. We would like to emphasize that
we did not choose the example branch and precedence graphs to favor the performance of
the probabilistic merge heuristic. In fact, the branch and precedence graphs were taken

from El-Riwini’s description of the multi-phase approach [1].

(a) (b) ()
0 0 0 0 0 0
1 1
blo4 4 4
5 7 3 7 7
5
3 2 2 2
15 15
19 19 19
3 3
6 3 23 6 23 6
27 27
7 31 8 31
N 7 30 33
8
8
40
44
44 Seconds 40 Seconds 33 Seconds
Multi-Phase Probabilistic Level Probabilistic Merge
Approach Weighting

Figure 3: Resulting Schedules

48

C. SIMULATION RESULTS

In this section, we report a summary of the results of the experiments conducted to
evaluate the performance of the proposed techniques using randomly generated parallel
programs.

The comparison test consists of applying both heuristics to a wide range of
randomly generated task graphs, with 10, 20, 40, 50, 80, and 100 tasks. We then compare
the resulting schedule lengths from the multi-phase heuristic against the schedule length of
the probabilistic merge heuristic. The number of processors is varied from 2 to 16. It is
important to note that the schedule length of a non-deterministic task graph will be
probabilistic in nature. This is due to the uncertainty when the scheduler is executed as to
which path of each conditional branch in the task graph will be followed. Thus the schedule
length is determined as the summation of the runtimes of the individual execution
instances, each weighted by their probability of execution.

The input programs were classified by the parameters CE and ND. CE is the ratio
of the combined communication of all tasks in the task graph over the combined
computation of all tasks. In other words, the value of the parameter CE reflects the degree
of communication versus computation in the input programs, where higher values of CE
implies higher degrees of communication. ND is the ratio of the number of tasks with task
probabilities less than one to the total number of tasks. In other words, the value of the
parameter ND reflects the degree of non-determinism in the input programs, where higher
values of ND implies higher degrees of non-determinism. For given values of CE and ND,
several parallel programs were generated randomly with varied precedence graphs and task

graphs.

1. Scheduling Efficiency

When comparing scheduling heuristics, one must consider not only the quality of
the schedule, but the complexity of the algorithm as well. It can be seen in Figure 2 that the

multi-phase heuristic does not scale well to a large number of tasks in the parallel program.

49

Despite the exponentially increasing runtimes of the multi-phase heuristic, we were
surprised that execution time was not the limiting factor in this algorithm. In fact, data
could not be collected for the multi-phase heuristic with large precedence graphs due to
memory limitations. With more than 40 nodes, the multi-phase heuristic would exhaust
virtual memory on our workstation. This is due to the enormous cost of generating all
execution instances, and subsequently scheduling them with MH. The probabilistic merge
heuristic, in contrast, scales according to a low-order polynomial function, and generates

schedules with reasonable runtimes even with large numbers of tasks.

2. Schedule Runtimes

Finally, we compare the runtimes of schedules generated by the multi-phase
heuristic against schedules generated by the probabilistic merge heuristic. For the set of
sample branch graphs and precedence graphs we used the proposed techniques to generate
the conditional schedule, and then calculated the probabilistic critical path length as the
weighted sum of the path length of each execution instance. It can be seen in Figure 4 that
the probabilistic merge heuristic consistently generated schedules which had shorter
probabilistic critical path lengths. These critical paths of the probabilistic merge heuristic

were, on average, 28% faster than those of the multi-phase heuristic.

50

800

H v H Y H
f Probabilistic Merge Heufistic —a—
: Multi-phase Approach -s—
g N
=1
3
g
o=
Bo
8
£=]
>
&
=
=
g
6]
100 ; H i i i i i
10 20 30 40 50 60 70 80 90 100

Number of nodes

Figure 4: Critical Path Lengths

D. CONCLUSIONS

In this thesis, we have studied several approaches to the problem of statically
scheduling tasks which comprise a non-deterministic task graph. We have reported a
summary of the results of experiments conducted to evaluate the performance of the
proposed techniques using randomly generated parallel programs.

The results of applying both El-Rewini’s multi-phase heuristic and the probabilistic
merge heuristic to a wide range of randomly generated task graphs, show that the
probabilistic merge heuristic consistently generates schedules which have shorter

probabilistic critical path lengths, despite significantly shorter runtimes. The critical paths

51

of the probabilistic merge heuristic were, on average, 28% faster than those of the multi-
phase heuristic.

Our future work includes the extension of the probabilistic merge heuristic to
graphs which contain periodic tasks, such as loops. We feel there is sufficient data-flow

information to optimize the merge phase, in a fashion similar to cylinder packing.

52

LIST OF REFERENCES

1. H. El-Rewini and H. Ali, Static Scheduling of Conditional Branches in Parallel
Programs, J. Parallel Distrib. Comput. 24 (Jan 1995), 41-53.

2. T. Lewis and H. El-Rewini, Introduction to Parallel Computing, Prentice Hall,
Englewood Cliffs, 1992.

3. T. Casavant and J. Kuhl, A Taxonomy of Scheduling in General Purpose Distributed
Computing Systems, IEEE Transactions on Software Engineering, Vol. SE-14, No. 2,
February 1988.

4. H. El-Rewini, T. Lewis, H. Ali, Task Scheduling in Parallel and Distributed
Computing, Prentice Hall, Englewood Cliffs, 1994.

5. E. G. Coffman, Computer and Job-Shop Scheduling Theory, Wiley, New York, 1976.

6. M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

7. M Gonzalez, Deterministic processor scheduling, Comput. Surveys, 9, No. 3 (Sept.
1977).

8. T. Hu, Parallel sequencing and assembly line problems, Operations Res. 9 (1961),
841-848.

9. V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessing, MIT
Press, 1989.

10. D. Towsley, Allocating programs containing branches and loops within a multiple
processor system, IEEE Trans. Software Eng. SE-12, No. 10 (Oct. 1986).

11.J. Ullman, NP-complete scheduling problems, J. Comput. System Sci. 10 (1975), 384-
393.

53

54

INITIAL DISTRIBUTION LIST

. Defense Technical INformation Center.......coviieiiiviiiiiiierereeneeeerasissiseensinererseemmmmenesns
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

. Dudley KnoX LIDIary.......ccccieierivinmineisnniseesseneseesess st
Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

. Chairman, COAe CS........ovriiereirrieerereeeeenreesreeseseneesstessseessssesasssesasasssessssesssesssssesones
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5000

. Dr. Theodore Lewis, Code CS/TL........niicieieerieecceetseresessiissnsssessesssassesssssanes
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5000

. Dr. David Pratt, Code CS/DP........irreieeeeieecrceiiiinneesesrresaesssssesssasesseessessssens
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5000

. MI. RODEIt GEOIEE....ceeeereeneeniriiiriititeniesieteete ettt sne sttt bbb 2
NSF ERC for Computational Field Simulation
Mississippi State University

Box 9627

Mississippi State, MS 39762

55

